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Skin diseases are a significant problem all over the world and 
especially in low and middle income countries. In sub- Saharan 
Africa, some form of skin disease is estimated to affect 21–
87% of the population. These afflictions constitute up to a 
third of outpatient visits to Pediatricians and Dermatologists. 
Among all skin disorders, infections are common in develop-
ing countries [1, 2]. Skin infections can be caused by various 
pathogenic microorganisms, such as bacteria, fungus, virus 
or parasites. These pathogens can cause either superficial or 
deep skin infections including impetigo, folliculitis, ecthyma, 
erysipelas, necrotizing fasciitis, dermatophytosis, cutaneous 
leshmaniasis, tinea versicolor, herpes simplex, herpes zos-
ter, warts, molluscum contagiosum, etc. For some superficial 
skin infections, available drugs and topical treatments may be 
effective to kill the pathogens. However, for more complex 
skin infection-related diseases, these methods may be much 
less effective. Some possible reasons for these difficulties 

include limited skin-drug permeability through the stratum 
corneum (SC), an impaired immune system, or other causes. 
In some cases, many weeks of treatment using additional oral 
medication may result in undesirable side effects, especially 
in fungal infected cases [3, 4].

Atmospheric pressure room temperature plasmas have 
proved highly effective in safely killing different kinds of bac-
teria, fungus, virus or even cancer cells, with minimal or no 
damaging effects on adjacent tissue [5–8]. The plasma gener-
ates a suite of reactive neutral and charged species including 
electrons, ions and charged cluster ions [9–12]. In some cases, 
the electric fields generated by the plasma at treated surfaces 
are known to be important, leading, for example, to transder-
mal drug delivery and gene transfection. Plasma-generated 
photons can also play a significant role. Skin structure is com-
plex, and pathogenic microorganisms have developed vari-
ous ways to survive on, in or under the skin. Microorganisms 
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Abstract
A novel plasma treatment method/plasma source called cupping-assisted plasma treatment/
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We report discharge characteristics and disinfection efficiency as a function of pressure and 
applied voltage.
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often grow on the rough skin outer surface, but they can also 
penetrate pores. Furthermore, difficult to treat multi-layer bio-
films are often formed instead of planktonic microbes. These 
aspects of skin-related infections can make skin disinfection 
much harder than disinfection of smooth surfaces. Many 
skin treatments using atmospheric pressure (atm) plasmas 
in vitro or in vivo have been reported [13–16]. For example, 
Daeschlein et al used an argon plasma jet device (‘Kinpen’) 
to treat a patient with Staphylococcus aureus colonization. A 
3 min plasma treatment showed selective disinfection of S. 
aureus, while the skin flora with Staphylococcus epidermidis 
and Staphylococcus haemolyticus remained undamaged. 
However, the pathogen was mobilized to the skin surface from 
deeper skin layers [17].

Existing plasma devices for skin treatment, such as the rare 
gas plasma jet, the surface microdischarge (SMD), the floating 
electrode-dielectric barrier discharge (FE-DBD) or plasma air 
needle are all generally operated in open air at one atmosphere 
[18–20]. These devices typically are associated with signifi-
cant loss of active species away from the intended treated area 
due to diffusion and convection into the surrounding environ-
ment. This decreases the active species concentration at the 
site of application and will generally decrease the treatment 
efficiency. At the same time, operating at atmospheric pres-
sure, spatially uniform plasma can be hard to achieve, espe-
cially if the plasma current contacts the skin. This is due to the 
formation of filaments and may lead to undesirably high local 
currents to the skin surface.

In light of these characteristics of atmospheric pressure 
plasmas, we propose a novel plasma treatment method and 
a corresponding plasma device for skin infection treatment, 
especially suitable for deep skin or subcutaneous infections. 
The proposed process and device combines plasma medicine 
technology with ancient Chinese ‘cupping’ therapy. We tested 
the discharge pattern under different applied voltages and 
pressures by using a surface micro-discharge (SMD) device 
as the operating plasma source. The antibacterial effectiveness 
under both low and higher applied voltage as a function of 
pressure were tested and compared. Finally, we briefly discuss 
the mechanism of antibacterial effect under different pressure 
and applied voltage.

Figures 1(a) and (b) show the basic sketch of the device and 
a photo of an example of the device vertically attaching to a 
human palm by pumping out part of the air inside, respectively. 

This device contains a cup chamber, a plasma source, a valve 
for pumping with or without air gauge. Different types of 
plasma devices could be mounted inside the cup chamber, 
such as surface discharge (SMD), floating electrode dielectric 
barrier discharge (FE-DBD) and plasma needle, etc. Here, a 
SMD device is mounted inside the chamber as an example. 
A valve for an air pump (automatic vacuum pump or ‘smart’ 
handheld manual pump) is fixed on top of the cup. A pressure 
gauge is mounted next to the valve to monitor and control the 
pressure inside. Similar to the practice of ancient Chinese cup-
ping technology, when the pressure above the skin is lowered, 
the cup can remain attached to the body without the help of a 
mechanical arm, as seen in figure 1(b). In this study, the diam-
eter of the cup is 5 cm and the height is 8 cm with a volume 
of ~0.16 l. The SMD device used is similar to those reported 
in greater detail elsewhere [21]. The diameter of the copper 
electrode and steel mesh are 1 cm and 1.8 cm, respectively. 
The dielectric between the copper electrode and the mesh is 
a square glass plate (2 cm  ×  2 cm) with thickness 1 mm. The 
two high voltage wires are connected to an AC power sup-
ply (Trek 10/40A) by Tungsten feedthrough mounted on the 
glass cup wall. A high voltage probe (Tektronix P6015A) is 
used to measure the applied voltage, and a 100 nF capacitor is 
connected to the circuit for power consumption calculation by 
using the Lissajous method [22].

Figure 2 shows discharge pattern images (taken from the 
bottom view when attached to a transparent glass plate) under 
different applied voltages and pressures ranging from 1 atmos-
phere pressure (atm) to 0.33 atm. For all the experiments pre-
sented here, the frequency of the applied voltage is 4 kHZ. The 
discharge area spreads from the center of the electrode to the 
surrounding edges as the applied voltage increases and as the 
inner pressure decreases [23]. As can be seen from the images, 
the breakdown voltage is ~3 kV (peak) at 1 atm. 4 kV readily 
ignites the discharge under 1 atm and the discharge becomes 
progressively much stronger as the pressure is reduced to 
0.67 atm, 0.5 atm and 0.33 atm. Lower pressure reduces the 
discharge breakdown voltage, which in turn decreases the 
demands on the high voltage power supply. At 0.33 atm, only 
~2 kV ignites the plasma. We also tested FE-DBD and plasma 
DC air needle devices inside the chamber, and the reduction 
in breakdown voltage was even more pronounced. For exam-
ple, a 2 mm gap FE-DBD at 1 atm breaks down at ~6 kV but 
only ~3 kV is needed at 0.5 or 0.33 atm. Typically, traditional 

Figure 1. (a) Sketch of cupping-assisted plasma device with a SMD inside as an example; (b) proposed device shown vertically attached to 
a human palm.
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cupping techniques become uncomfortable below about 0.33 
atm, so we limited our investigation to this pressure reduction.

The power consumption as a function of voltage and pres-
sure is measured and is shown in figure 3. Consistent with the 
discharge images in figure  2, power consumption increases 
with applied voltage and reduced pressure. Gas molecular 
density should be approximately proportional to pressure 
assuming near-constant gas temperature. Discharge imped-
ance is correspondingly reduced as pressure is lowered in this 
range, in part due to the longer collisional mean free path for 
both charged and neutral species [24].

In order to test the antimicrobial effects under different con-
ditions, we deposited bacteria on the surface of nitrocellulose 
(NC) membranes and exposed the membranes to the SMD 
plasma at various pressures and applied voltages. Images of 
the bacteria on the membranes are shown in figures 4 and 5. 
Aqueous suspensions of 100 µl containing E. coli bacteria 
with concentrations of ~106 CFU ml−1 were evenly spread 
over the NC membranes before treatment. The diameter of 
the NC membrane is about 3.5 cm. The distance between the 
mesh and the NC membrane surface was fixed at 5 mm. In one 
set of experiments, no confining chamber was used. Samples 
were divided into 4 groups: the 1 atm without chamber group, 
the 1 atm with chamber group, the 0.67 atm with chamber 
group and the 0.33 atm with chamber group. Pretreatment of 
the NC membrane under all tested conditions showed no sig-
nificant anti-bacteria effect.

For each group, samples were treated for 0 min, 1 min, 
2 min and 5 min, respectively. For each treatment condition, at 

least 3 samples were repeated. In the lower pressure groups, 
before treatment, the inner pressure was reduced to a fixed 
value, and then the plasma was generated under different volt-
ages. After treatment, the treated sample was immediately 
taken out and attached to the pre-prepared LB agar (Fisher 
Scientific) surface for growth. The inner chamber was then 
purged with clean air to exhaust all the residual species. All 
the treated samples were incubated at 37 °C for 24 h and then 
the results were recorded.

Figure 2. The discharge pattern under different applied voltage (increasing from left to right) as a function of inner pressure ranging from 1 
atm (top) to 0.33 atm (bottom). As pressure is lowered, the discharge is brighter at a given applied voltage.

Figure 3. Power consumption with different applied voltages 
as a function of pressure ranging from 1 atm to 0.33 atm. Power 
consumption trends follow the discharge brightness trends shown in 
figure 2.
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The antibacterial effects of the plasma device at different 
pressures and applied voltages can be seen in figures 4 and 
5. We tested the effect of lowered pressure on bacteria: sim-
ply lowering pressure had no discernable affect the growth 
of E. coli in this set of experiments. At the lower voltage of 
3 kV illustrated in figure 4, only at the lower pressures of 0.67 
atm and 0.33 atm were any antibacterial effects observed. The 
effects increased with exposure time. The results in figure 5 
were taken with a 5 kV applied voltage. At this higher volt-
age, the effects of the confining chamber can be seen clearly. 
With no confining chamber at 1 atm, there is no observable 
antibacterial effect even at 5 min exposure. This result may be 
partly because of the relatively long treatment distance (5 mm) 
and the relatively small SMD electrode structure (1 cm diam-
eter). However, with the confining chamber present, virtually 
all bacteria were killed at 1 atm even for a 1 min exposure. 
Discharges operated at the lower pressures appear to be some-
what less effective for the same exposure times, even though 
figures  2 and 3 might suggest that more intense discharges 
are maintained at the lower pressure conditions. It is possible 
that even though the lower pressure discharges appear more 
intense, the rates of creation of active species, and therefore 
their concentration in the confining chamber, are reduced 
because the gas pressure and therefore gas densities are corre-
spondingly lower at lower pressure.

We note that even though the apparent rate of bacterial kill-
ing does not increase at the lower pressures for a 5 kV applied 
voltage, it is possible that there may be other advantages in 
treating skin at lowered pressure. Even though there appears 
to be little or no direct evidence of enhanced pore opening 
with cupping, it is thought that lowered pressure will increase 

skin porosity and may promote increased bacterial killing in 
deeper layers of the skin, but that has not been explicitly dem-
onstrated here [28]. Furthermore, with this design, the device 
can be easily attached to skin. In the cases presented here, we 
described the use of the SMD but with other plasma devices 
like the FE-DBD or plasma needle, plasma would directly 
touch the skin. In these cases, an electric field and current 
may assist skin disinfection and even contribute to transder-
mal transport, as well [29, 30].

It is known that SMD devices can operate in 3 different 
modes depending on the applied power: (1) O3 mode at low 
power; (2) transition mode at medium power; and (3) NOx mode 
at high power [25–27]. We are not able to measure gas compo-
sition, however, given the geometric constraints of this system. 
We measured the concentration of nitrite in water exposed to 
the plasma using Griess reagent. −NO2  was detected in all the 
groups which show anti-bacterial effect, hence the active spe-
cies involves in the anti-bacterial process appears to involve 
NOx. Finally, the measured mesh temper ature increase after 
5 min exposure at 5 kV for all the pressure tested was within 
5 °C. Therefore, temperature effects appear to be negligible.

In conclusion, we present a new method for air plasma-based 
for skin disinfection and treatment. This device combines tradi-
tional Chinese ‘cupping’ technology with modern cold atmos-
pheric plasma technology. Operated at reduced pressure, the 
device easily attaches to skin without a supporting mechanical 
arm. An SMD device was used to illustrate the method for skin 
infection treatment. The discharge under lower pressure is easier 
to ignite. The power consumption was calculated and the anti-
bacterial effect was tested under different pressures from 0.33 
atm to 1 atm. A range of applied voltages and treatment times 

Figure 4. Anti-bacterial effect under different pressure with an applied voltage of 3 kV. The images show bacteria grown on nitrocellulose 
(NC) membrane surfaces after different times of plasma exposure. The top row is for a 1 atm application without a confining chamber. The 
near breakdown threshold applied voltage of 3 kV shows little antibacterial effect at 1 atm, but increasing effects at the lower pressures.
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were used in the antibacterial tests. The cup contains and con-
centrates the active species, avoiding loss into the environment. 
This dramatically enhances the antibacterial effect. Ancient 
Chinese cupping was thought to open skin pores and although 
this effect was not explicitly tested in this study, a lower pres-
sure might aid transport of active species into deeper skin layers. 
Future studies will focus on skin disease treatment as well.
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